ClickHouse SELECT Advances
Dynamic column selection (also known as a COLUMNS expression) allows you to match some columns in a result with a re2 regular expression.
Matchers
Select all columns:
SELECT * FROM hits;
Select only specific subset of columns:
SELECT COLUMNS('URL.*ID') FROM hits;
┌─URLCategoryID─┬─URLRegionID─┐
│ 15664 │ 216 │
│ 0 │ 0 │
│ 0 │ 0 │
│ 0 │ 0 │
│ 0 │ 0 │
└───────────────┴─────────────┘
SELECT COLUMNS(WatchID, UserID) FROM hits;
┌─────────────WatchID─┬───────────────UserID─┐
│ 5365534025466744368 │ 2213399965098237040 │
│ 5287559196528052048 │ 2213399965098237040 │
│ 9057961221679572813 │ 2213399965098237040 │
│ 5520508008786474572 │ 9141107111321352513 │
Column transformers
Apply transformations for selected columns or remove some columns from selections:
APPLY: Allows you to invoke some function for each row returned by an outer table expression of a query.
SELECT * APPLY toString FROM hits;
SELECT COLUMNS('URL.*ID') APPLY toString FROM hits;
SELECT COLUMNS('URL.*ID') APPLY x -> toString(x) FROM hits;
┌─toString(URLCategoryID)─┬─toString(URLRegionID)─┐
│ 15664 │ 216 │
│ 0 │ 0 │
│ 0 │ 0 │
│ 0 │ 0 │
│ 0 │ 0 │
└─────────────────────────┴───────────────────────┘
EXCEPT: exclude one or more columns from the result.
SELECT * EXCEPT (UserID, URLRegionID) FROM hits;
SELECT COLUMNS('URL.*ID') EXCEPT URLCategoryID FROM hits;
┌─URLRegionID─┐
│ 216 │
│ 0 │
│ 0 │
│ 0 │
│ 0 │
└─────────────┘
REPLACE: Specifies one or more expression aliases
SELECT COLUMNS('URL.*ID') REPLACE (URLCategoryID * 10 AS URLCategoryID)
FROM hits;
┌─URLCategoryID─┬─URLRegionID─┐
│ 156640 │ 216 │
│ 0 │ 0 │
│ 0 │ 0 │
│ 0 │ 0 │
│ 0 │ 0 │
└───────────────┴─────────────┘
SELECT COLUMNS('URL.*ID') REPLACE (leftPad(toString(URLRegionID), 10, '*') AS URLRegionID)
FROM hits;
┌─URLCategoryID─┬─URLRegionID─┐
│ 15664 │ *******216 │
│ 0 │ *********0 │
│ 0 │ *********0 │
│ 0 │ *********0 │
│ 0 │ *********0 │
└───────────────┴─────────────┘
We can also combine them:
SELECT COLUMNS('URL.*ID') APPLY(toString) APPLY(length) APPLY(max) FROM hits;
┌─max(length(toString(URLCategoryID)))─┬─max(length(toString(URLRegionID)))─┐
│ 5 │ 5 │
└──────────────────────────────────────┴────────────────────────────────────┘
Select from multiple tables
merge() create a temporary Merge table with structure is taken from the first table encountered that matches the regular expression.
When upgrading ClickHouse usually rename system table if schema changed in a new release: system.query_log, system.query_log_0, system.query_log_1, ... The query below help querying from all them:
SELECT * FROM merge(system, '^query_log')
Series: ClickHouse on Kubernetes
Complete guide to deploying ClickHouse on Kubernetes using the Altinity ClickHouse Operator. Learn how to set up your first single-node cluster, configure persistent storage, manage users, and customize ClickHouse versions. Includes practical examples and best practices from production experience managing clusters with trillions of rows.
Dynamic column selection (also known as a `COLUMNS` expression) allows you to match some columns in a result with a re2 regular expression.
Complete guide to monitoring ClickHouse on Kubernetes. Learn about built-in dashboards, Prometheus + Grafana setup, powerful system tables for monitoring queries, and the ClickHouse Monitoring UI dashboard. Includes practical examples, essential monitoring queries, and best practices for production observability.
After starting this series ClickHouse on Kubernetes, you can now configure your first single-node ClickHouse server. Let's dive into creating your first table and understanding the basic concepts behind the ClickHouse engine, its data storage, and some cool features
My favorite ClickHouse table engine is `ReplacingMergeTree`. The main reason is that it is similar to `MergeTree` but can automatically deduplicate based on columns in the `ORDER BY` clause, which is very useful.
Learn how to set up and manage ReplicatedReplacingMergeTree in ClickHouse on Kubernetes. This comprehensive guide covers cluster setup with ClickHouse Operator, data replication, performance tuning, and best practices for high availability deployments.